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LAMINAR FILM CONDENSATION NEAR A
STAGNATION POINT ON A
GENERAL CURVED SURFACE
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Abstract—The three-dimensional laminar boundary layer equations are given for laminar film condensa-
tion on a general curved surface in quiescent vapour. An example is investigated which relates to the flow
in the neighbourhood of a stagnation point. Numerical results are obtained for the similarity solution
in the case of condensation of steam at 100°C and atmospheric pressure. Flow and heat transfer characteris-
tics are presented in graphical and tabular form and compared with those obtained by an approximate

a;,a,,
a;,
Cps

p
f,g,h,F,G,H,
G.

hf [
K,
n,

Pr,
D,
Rk’

T
Uy,

Xks X ks

Greek symbols
d,

ps

method.

NOMENCLATURE Hs viscosity ;
unit vectors on surface S Ths components of shear stress,
unit vector normal to S; k=12
specific heat; Subscripts
velocity and thermal func- s, saturated ;
tions; w, wall.
dimensionless group )
(= gR3/v?): Superscript

° *
latent heat of condensation; : vapour phase.

thermal conductivity;

unit vector normal to S at the
stagnation point;

Prandtl number (= C,1/K);
pressure;

principal radii of curvature,
k= 1, 2;

temperature;

components of velocity,
k=1,23;

curvilinear co-ordinates,
k=1273

thickness of the condensate
film;
density;

1. INTRODUCTION

IT 15 the purpose of this note to present
theoretical results on laminar film condensation
near a stagnation point on a general curved
surface. Numerical results are obtained on
investigation of the similar solution of the three-
dimensional boundary layer equations for the
flow of the condensate and its vapour, and are
compared with those obtained by an approxi-
mate method due to Nusselt and Voskresenskiy
(see Kutateladze [1]). For steam-water con-
densation the approximate method was found
to estimate wall heat transfer and condensation
rates in error by at most 5 per cent. Although this
result has already been established in [2], for the
two-dimensional problem of laminar film con-
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densation of steam on a vertical flat plate, it was
not intuitively obvious in the present three-
dimensional problem which contains the
interesting feature of secondary flow induced by
the curvature of the surface.

2. ANALYSIS

Consider a general curved surface S main-
tained at temperature Ty, below the saturation
temperature T, of the ambient vapour. At any
point on the surface the thickness of the conden-
sate layer is assumed thin in comparison to the
principal radii of curvature so that the boundary
layer approximation can be invoked. The
following procedure for deriving the boundary
layer equations governing the motion of the
condensate and its vapour is an extension of the
treatment by Howarth [3] and Rosenhead [4]
for forced flow past a curved surface, and by
Poots [5] for natural convection on an iso-
thermal heated surface.

The flow of the condensate and vapour is
considered to have a stagnation point located at
the maximum point on the surface where the
tangential plane is horizontal. This point is now
chosen as the origin of curvilinear co-ordinates
(xy, x,) on the surface. If the parametric lines
x; = const. and x, = const. are lines of curva-
ture of S then, within the framework of the
boundary layer approximation, these are the
lines of curvature of the condensate-vapour
interface, S* Following [3-5] define a, and
a, as unit vectors tangential to these lines, let
a; be the unit vector normal to S (and S*), and
x5 be the distance measured along a normal to
§ in the condensate phase so that the equation of
the condensate-vapour interface is denoted by

(1)

Finally let x% be the distance measured along a
normal to S*.

If n denotes the unit vector normal (in the
vertical direction) at the stagnation point and the
condensate and vapour velocity fields are given
by

X3 = 0(xy, X,).
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3 3
= X av, V' =) a v @)
j=1 j=1
the three-dimensional boundary layer equations
governing laminar film condensation, given in
the notation of [3-5], are obtained in com-
ponent form as follows:

Condensate:
1 0 0
Wik, {6 (pv1hy) + (Pvzh )}
+ 6—x3(p03) =0, (@)
{Dvl . a0 Ohy v} ok,
hih, 6x2 hih, 0x,
0 ov,
= (p — p* LA |
=(—p*)gm.a, + P (u ax3)’ “
Do, | 0102 Ohy vl Ohy
PIDt " hhyox,  hih, 0%,
6 60
— p* -2
DT ¢ oT
pcpﬁ = 5_)63 (K 5;—3), (6)
where
D wo nd 3
Dt h,0x, hy0x, oxs

Vapour: The governing equations are as given
in (3)(6) with v; replaced by v} and as the vapour
is at saturation temperature T, p and p are
replaced by p* and u*, respectively.

Boundary conditions: On the surface S

™)

On S* given by x} = 0 and x; = §(x,, x,) the
conditions for continuity in the tangential com-
ponents of velocity, mass inflow and shear stress
yield

v1=v2=v3=0,T=Tw.

vy = U?, Uy, = U;: PsUz = p*Ug,
ov, « 001 ov, » OU3

= p*r L ==, 8

”s 6X3 I'l axg ”S ax3 l"t axg ( )
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the thermal conditions are
or
s aX3

where h,, is the latent heat of condensation.
Finally in the vapour phase

T=T, Kq—=-—p*vsh, 9

(10)

The above system of equations (3){10) is
completely defined given the condensate
property relations:

p=pT) c,=c(T), p=uT)
andK = K(T), (11)

together with the specified geometry of the sur-
face. Note that surface tension effects have been
neglected. Consequently the pressure at the
interface is continuous, yielding the components
of the gravitational buoyancy force as stated in
(4) and (5).

In the vicinity of the stagnation point the
length elements h, and h, take their values at
the stagnation point and consequently the scalar
products become

v -0, v > 0asx% — o0.

(12)

h,
Rl xl, n.a2=—lgx2,
where R, and R, are the principal radii of
curvature at the stagnation point. On substitu-
tion of (12) into the boundary layer equations a
similar solution valid to first order in x, and x, is
obtained.

For the condensate phase new dependent and
independent dimensionless variables are intro-
duced, namely:

n.a, =

hixy = RyXy, hyx; = Ry X, x3=R Gc_*ﬂ,
0=R,G’*¢, v = ——G*Xl c(lif
_Yseiy d9
vy = RzGc X2 d?]’
v
vy = — == GHaf + g)
3 R, g
and (T — TYAT, — T,) = h(n), (13)

where a = (R,/R,)* and G, = gR}/v2 It is also
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convenient to introduce a further change of
independent variable

z = i/, (14

where #j denotes the Howarth-Dorodnitsyn
variable

n

¢
. p p

=|—dny and = | —dn, 15
fl lp’ n ¢ lps n, (15

together with the new dependent variables

F=ua +9g, G = dg/dz, H=h (16)

The boundary-layer equations now become the
ordinary differential equations:

pl“ AV 17 12
= F"Y + §(FF' — F'?
(pwe")

+28(F — G)G+ (1 + a2)$3—(£:pp—*)=0, (17)

Ps/‘s
— n*
+ 433("—”) =0, (18)
P
pk
H') + ¢ Pr, SerH - =0, 19
(p;ks ) ‘5 Pl ( )
where the dash denotes differentiation with res-
pect to z.

For the vapour phase the new independent
variable is

(20)

v* dg*
v = R—Gftxzd—z;,
2

*

vt = %;Gc* of* + g%,  (13%
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which yield the governing equations
F*" 4 F¥F*' —F*' 24 AF* —G*G*=0, (17%)
G*”+F*G*’ _G*2=0’ (19*)

where the dash now denotes differentiation with
respect to z*, and
F* = of * 4+ g*, G* = g*. (16*)

The boundary conditions (7)+(10) transform as
follows:

F(0) = F'(0) = G(0) = HO0) =0,
F1) = 62 ),

6= $2-6°0.  F1) =L )

s

* K \
F//(l) —_ (52# v F*//(O)’ (21)
:LLSVS
* %
G(1) = $25-6*(0),
, h;, Prg
H(1) =1, H(1) = m‘ﬁF(l),/
and finally
F¥(0) = 0, G*(o0) = 0.

Consider now the simplification introduced
by employing the Nusselt-Voskresenskiy
approximate method. On neglecting the effects
of convective heat transfer, inertia forces and
vapour drag on the condensate flow the above
nonlinear boundary value problem (17)(19),
(17*), (19*) and (21) reduces to the following:

4 — p*
(ﬂpﬂ) =—(1+ a2)(53(’;p_),
Pshs P
' _ %
(P# G) __gpl=r
Psts P
ok g\

<psksH> =0

subject to the boundary conditions:
F(0) = F'(0) = G(0) = H(0) = 0,
F'(1)=G1) =0, H(1) = 1,

(22)
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7 hf g P Ts é

=T, - )
Note that these equations are uncoupled and
this implies uncoupling of the x; and x,-
components of velocity. The solution of (22) and
(23) is obtained following the method given in
[2] and is as follows:

1
¢= «T,; T) {c,,.AT b‘k‘) 24

0

F(1).

and

F o U+ (Prh,)o
1+o* = [dT,; TH]? ¢, AT

H 1=1

AJRa(] 405 o)

g91=H

g1=
k _ ¥
(J r (” 2 )dgl> dgz] dgs}. 6)
g1=g2
The above integrais have already been evaluated
in [2] for the condensation of steam at 100°C
and atmospheric pressure. Thus approximate
values for the characteristics 1/u (d2f/dn?),,
(d?g/dn?)o, (dh/dn)o, af (4) + g(¢) and ¢ are now
available for values of the curvature parameter
a = 0,4 % 2and 1 in the extreme case Ty, = 0°C
as displayed in Table 1. For a given « and T, the
above approximate characteristics are employed
as initial starting conditions in the numerical
integration for the similar solution. The iterative
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Table 1. Steam—water condensation T, = 100°C, Ty, = 0°C, Exact (E), Approximate (A)
0 % 3 3 1
o
E A E A E A E A E A

[(0)/a 0147 0155 0144 0152 0138 0146 0131 0138 0122 0130
g"'(0) 0-145 0155 0143 0-152 0137 0146 0-130 0138 0122 0130
H(0) 11171 1123 1-190 1-141 1240 1-188 1312 1256 1396 1336
¢ 0987 1-008 0971 0993 0932 0954 0-881 0902 0828 0-848
af (@) + gl¢) 0100 0102 0102 0103 0106 0108 0112 0114 0120 0121
=00 1-059 1059 1058 1058 1058

h;yAlg o

procedure employed to solve (17)19), (17%),
(19*) and (21) is described in [2] and the exact
values so obtained are listed in Table 1.

3. DISCUSSION OF RESULTS
In this section the exact numerical and
approximate results for steam—water condensa-
tion are compared and particular attention is

paid to the effects of secondary fow.
Velocity and thermal profiles. In Figs. 1 and 2
the exact dimensionless velocity profiles
v,/hyx,(g/R,)* and v,/h,x,(g/R,)* are displayed

for the extreme case T, = 0°C and « = 0, §, 1.
Clearly the induced secondary flow (in the
x;-direction) does not appreciably effect the
main component of flow. Moreover it is
found that there is no observable variation in
the direction of the velocity vector throughout
the condensate and vapour layers. This occurs
since the interface is in motion and the effect
of vapour drag is small. In Figs. 3 and 4 exact
and approximate profiles are displayed for
a =3 and T,, = 0 and 70°C. The approximate
profiles are in error by —12 per cent in both

N

—_——
Z*

FiG. 1. Representative dimensionless velocity profiles for
Ty =0°Canda = Y and 1.
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FiG. 2. Representative dimensionless velocity profiles for
Tw=0Cand ¢ = 0,%and 1.

the x, and x,-directions and, as already dis- zero. Furthermore, as in [2], the condensate
cussed in [2], this is due to the neglect of vapour thermal profile is linear and hence uninfluenced
drag; as (T, — T,) — O the error diminishes to by secondary flow.
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FiG. 3. Representative dimensionless velocity profiles for
a =} and Ty = 0 and 70°C; Nusselt-Voskresenskiy —~——,
similar solution
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Fic. 4. Representative dimensionless velocity profiles for
Ty =0 and 70°C; Nusselt-Voskresenskiy ———, similar
solution

Flow characteristics. Those of practical
interest are as follows: First the film thickness,
defined by (13) and (15), is

8 = R,G *¢. 27
On the basis of the boundary layer approxima-
tion the shear stress at the wall has components :

601
= 6x3 x3=0
= o2 _Vi(Pﬂ)w hyx, Gt f"0)

- kd

R, ps R;

(602
Ho ax3 x3=0

Rz Ps Rz

(28)
Ty =

g’©0). (29)
For definitions of the condensation rate and
local heat flux consider in the neighbourhood
of the stagnation point a curvilinear volume

element in the condensate phase with sides
hydx,, h,dx, and ¢ lying in the a,, a, and a;-
directions, respectively. Thus the condensation
rate AT, , is given by

Al o/hihy dxy dx, = pyv,)s

= LG [af@) + o)) (0)
2

and the local heat flux for the control area
hih, dx, dx, is

Aqy, o/hyhy dx, dxy = K, (§T>
0

X3
_ P K, AT
TP

It is seen from Table 1 that the Nusselt-
Voskresenskiy method overestimates the con-
densate thickness, shear stress components and
condensation rate by 26 and 2 per cent,

SwoD GHRO). (31)
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respectively. In the case of the heat flux there is
an underestimation of 5 per cent. The reasons
(see [2]) for these discrepancies are undoubtedly
due to the neglect of vapour drag in calculation
of 4, 7;, 7, and Al'y  and also the effect of the
variation of conductivity with temperature in
the case of the heat flux. Finally it is of interest
to compare the ratio of the local heat flux to the
condensation rate, namely the dimensionless

group
Aqq,o/hyy ATy o

KO ¢, AT (pK),

oaf (@) + g(¢) by Prs (0K),

As shown in Table 1 for T, = 0°C this ratio

varies between 10593 and 1:0584 for the range

0 < « < 1. Thus its value is virtually independ-

ent of curvature effects. In the Nusselt-

Voskresenskiy theory the ratio is unity and
independent of a.

(32)

4. CONCLUSIONS

In the case of steam—water condensation at a
general stagnation point it has been established
that the Nusselt—Voskresenskiy method yields
condensation and heat transfer rates in error
by at most 5 per cent. Moreover the effect of the

G. POOTS and R. G. MILES

secondary flow induced by curvature has been
satisfactorily predicted by the approximate
theory. However, this would not necessarily be
the case if the inertia forces and convective heat
transfer were appreciable, ie. if Pr, > 1 and
(hyy/c,, AT) 2 5 (see [2]). Perhaps useful in-
formation could be obtained on the effects of
secondary flow, and on the velocity of the
Nusselt-Voskresenskiy theory by examining
the condensation of a liquid metal vapour at a
general stagnation Ppoint. Here the otherwise
weak inertia terms would be appreciable.
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CONDENSATION LAMINAIRE PELLICULAIRE PRES D'UN POINT D’ARRET SUR
UNE SURFACE COURBE GENERALE

Résumé— Les équations de la couche limite laminaire tridimensionnelle sont données pour la condensation
laminaire pelliculaire sur une surface courbe générale dans de la vapeur au repos. Un exemple est examiné
qui se rapporte 4 'écoulement au voisinage d’un point d’arrét. Les résultats numériques sont obtenus
pour la solution en similitude dans le cas de la condensation de la vapeur d’eau 4 100°C et a la pression
atmosphérique. Les caractéristiques d’écoulement et de transport de chaleur sont présentées sous forme de
graphiques et de tableaux et comparées avec celles obtenues par une méthode approchée.

LAMINARE FILMKONDENSATION NAHE EINEM STAUPUNKT

Zusammenfassung— Die dreidimensionalen Grenzschicht-Gleichungen fiir laminare Filmkondensation

aus ruhendem Dampf an einer allgemein gekriimmten Oberfliche werden angegeben. Ein Beispiel wird

untersucht, welches sich auf die Stromung in der Nihe eines Staupunktes bezieht. Numerische Ergebnisse

werden erhalten fiir die Losung im Fall von Kondensation von Dampf bei 100°C und 1 bar. Strémungs-

formen und Wirmetransportvorginge werden in Diagrammen und Tabellen angegeben und mit
Ergebnissen aus einer Ndherungsmethode verglichen.
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JAMUHAPHAA NAEHOUYHAST KOHAEHCAIIUA BBIAWU3N
KPUTUYECKON TOUKU HA OBBIYHON KPUBOJIUHENHON
NMOBEPXHOCTHN

Aunsoranusa—IIpnBogATCA YPaBHEHUA A JAMUHAPHOTO IMOTPAHMYHOTO CIOA NPH JaMu-
HAPHON NIEHOYHOY KOHAEHCAMK HA OOBIYHOM KPMBOJUHEWHON NOBEPXHOCTH B HEMOJABUAKHOM
nape. PaccmaTpuBaercsa pesum TeueHUA BOIMBN KPUTHYeCKol Toukd. [L0Ty4eHH YnCIeHHBIE
pesyabTaTH AJA NOJOOHBIX pelleHuit B cayyae koHgencauuu napa npu 100°C u armocdepuom
naBieHuy. JlaHHBle [0 TEINIOOOMEHY W rWIPOAMHAMUKE MpeICTABIEHH rpaduyeckn u
CPaBHMBAIOTCA ¢ AHAIOTMYHLIMK Pe3yibTaTaMU, MOJNYICHHHMM NPUOIMKEHHBIM METONOM.
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